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Optical projection tomographic microscopy is a technique that allows 3D analysis of individual cells.
Theoretically, 3D morphometry would more accurately capture cellular features than 2D morphometry.
To evaluate this thesis, classifiers based on 3D reconstructions of cell nuclei were compared with 2D im-
ages from the same nuclei. Human adenocarcinoma and normal lung epithelium cells were used. Testing

demonstrated a three-fold reduction in the false negative rate for adenocarcinoma detection in 3D versus
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2D at the same high specificity. We conclude that 3D imaging will potentially expand the horizon for
automated cell analysis with broad applications in the biological sciences.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and study hypothesis

In 2D representation of 3D objects, spheres become circles, pyra-
mids become trapezoids, and lines remain lines, but of misleading
length. Single perspective 2D imaging renders 3D objects incom-
pletely, thus limiting the performance of automated classification
systems that rely on 2D feature measurements. The technique of
tomographic reconstruction [1] potentially removes this constraint
and permits creation of a 3D model that can comprehensively rep-
resent the actual 3D features of an object based on its multiple 2D
projections. Our hypothesis is that true 3D feature measurements of
a 3D object will out-perform 2D feature measurements from a 2D
image of a 3D object.

More specifically, our interest is in cellular classification to aid
in early detection of lung cancer. We report here on a new form
of microscopy that enables automated cell classification based on
optical projection-based 3D computed tomography [2] (Cell-CT™),
and establish its merit relative to classification performance based
on 2D images using cancer and normal human lung cells in culture.
Some considerations follow:

o A 3D image provides the dimension of depth: volume and surface
areas may be computed accurately.

* Corresponding author. Tel.: +1206 616 1465; fax: +12066854315.
E-mail addresses: meyer@visiongate3d.com (M.G. Meyer), m_fauver@yahoo.com
(M. Fauver), rahn@visiongate3d.com (J.R. Rahn), neumann@visiongate3d.com
(T. Neumann), patten@visiongate3d.com (F.W. Patten), eseibel@u.washington.edu
(E.J. Seibel), nelson@visiongate3d.com (A.C. Nelson).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.06.018

o A digital 3D tomographic reconstruction enables the creation of
an additional host of descriptive 3D features that are not available
in 2D.

Features based on a single 2D perspective are orientation depen-

dent and focal plane dependent.

o Conventional 2D optical microscopy that supports sub-micron res-
olution is not consistent with a depth of field that encompasses
the thickness of a cell nucleus. Therefore, 2D imaging provides
only a sample of the nuclear volume, omitting some potentially
important nuclear characteristics [3].

e Objects in conventional 2D microscopy are sometimes occluded

by overlapping material from higher and lower focal planes.

Suspended cells imaged in 3D are more likely to conform to their in

situ condition, whereas forcing a cell to lie flat against a glass slide,

as in conventional 2D microscopy, likely introduces morphological
distortions.

Our aim, therefore, is to conduct a test of the hypothesis that classi-
fication of a cell is more accurate when based on a 3D representation
than a 2D sample. Construction of our test was organized to provide
a 3D to 2D performance comparison free from specimen composi-
tion, specimen preparation and instrumentation bias. Consequently,
we examined the relative performance difference between 2D and
3D classification results on the same cell objects. As such, com-
parisons of performance measures derived from multiple observers
were avoided since experimental conditions may vary considerably
from observer to observer.

The 3D imaging of cells may be achieved through several
methods including: transmission electron microscopy [4] and con-
focal microscopy [5]. These methods produce high quality 3D
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renderings of cells but with non-isotropic resolution and at consid-
erable expense in time and hardware cost. Therefore, we used the
optical Cell-CT system for imaging cells, whose pipeline architecture
for delivery of cells promotes rapid imaging necessary to create the
cellular ensembles needed to test the classification hypothesis.

The sections below describe the methods for cell preparation and
Cell-CT imaging, classification methods, experimental design, results
and discussion.

2. Methods
2.1. Cell-CT system

To assess the differences between 3D and 2D imaging, we devel-
oped the optical Cell-CT system, which comprises:

o Cell fixation and absorption-based staining.

o Preparation to suspend cells in an optical-gel that is injected into
a capillary tube.

An optical platform capable of rendering projection images of cel-
lular objects from multiple perspectives as the capillary tube ro-
tates.

Tomographic reconstruction using a filtered back-projection
method similar to X-ray computed tomography.

Automated feature extraction and classification to foster high-
sensitivity and high-specificity characterization of cells.
Visualization using standard volume rendering techniques.

Human lung adenocarcinoma (cell line A549) and normal human
small airway epithelial cells (cell line SAEC) were grown in culture
for the purpose of testing the Cell-CT system. Cells were fixed and
stained using standard techniques involving 2% paraformaldehyde
and Gill hematoxyln. Use of standard fixation and staining tech-
niques permits cellular analysis that is consistent with the current
standards of cell cytology, thus permitting an expert cytologist to
perform standard cell morphological characterization when build-
ing databases used to train classifiers. Cells were enucleated to fo-
cus attention on cell nuclear features, although enucleation is not a
requirement of operation of the Cell-CT.

A brief overview of the Cell-CT microscope is provided below and
illustrated in Fig. 1. Stained nuclei were suspended in an optical-
gel and injected into a capillary tube (50 um inner diameter) that
is optically coupled to an objective lens. Pressure applied to the gel
moves objects into position for image collection as the tube rotates.
As the objective lens plane of focus is swept through the object,
focus-invariant images, or pseudo-projections, are taken that equally
sample the entire nuclear volume from a single perspective. The
pseudo-projection image is created rapidly compared to the tube
rotation speed, such that motion-blur is negligible. A large set of
pseudo-projections is taken from multiple views (by rotating the
tube containing the cell) and then processed using a filtered back-
projection algorithm to compute the tomographic reconstruction.

Fig. 1 illustrates pseudo-projections taken at three angular posi-
tions: 0°, 90° and 180°. Illlumination was provided by inchoherent
light in the visible portion of the spectrum. In the reconstruction, 3D
voxels were cubic, with a size of 66.5 nm in each dimension. Recon-
struction volumes varied in size, as the image collection volume was
cropped around the object. Typically, volumes were approximately
150 pixels on the side. A total of 500 pseudo-projections were ac-
quired at 0.72° increments around 360° of rotation. Optical settings
were: source wavelength = 585 4+ 30 nm, condenser NA = 0.4, ob-
jective NA = 1.3 and magnification = 100x. A 12-bit monochrome
camera was used.

For each nucleus, a reference 2D image was also collected on the
Cell-CT system using a single, fixed-position focal plane that was
automatically and centrally focused.

2.2. Classification techniques

Automated cell classification involves numerically representing
morphology markers that distinguish normal from abnormal cells.
These markers were used as input features to a classifier that pro-
vides a statistical risk score that correlates to the probability of ab-
normality. Features were defined to represent morphological char-
acteristics that, from 2D cytology, are known to distinguish normal
from adenocarcinoma cell nuclei [6]. These features describe vari-
ous aspects of nuclear morphology including size and shape, grey
scale distribution, texture, nucleoli count and normalized features.
A total of 65 features were computed for both 2D and 3D images in
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Fig. 1. Diagram illustrating operation of the optical projection Cell-CT system.
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Table 1
Description of features used for classifier development

Type of feature

Number of features

Size and shape features—describing the shape of the object 7
Histogram features—describing the grey scale distribution associated with the 2D or 3D object 15
Texture features1—describing the general character of grey scale texture within the volume or area of the 2D or 3D object 20
Texture features2—characterizes texture based on the 2D or 3D fourier transform of the object 10
Nucleolar features—nucleoli are important features appearing more commonly in malignant nuclei. 8
These features aim to characterize the occurrence of these structures
Normalized features—combinations of the above features, e.g. surface area/volume ratio 5
Total features 65

the study. By using features that have recognized significance for 2D
cytology, we tested the hypothesis that the analogous 3D features
might provide more accurate classification than the 2D features.

The set of 65 features used for the study is defined in Table 1.

It is important to note that the set of features employed for this
study is not exhaustive of the possibilities either for 2D or 3D clas-
sification. There are many features that only have a 3D definition,
for example, the count of surface permeations, or invaginations that
lead into voids in the interior of the nucleus. An example of such a
structure is given later in Section 3. The 2D slice would only capture
these structures by happenstance, and even then a comprehensive
measurement of these structures would not be possible. As 3D cellu-
lar morphology, and its relevance to the detection of pre-cancerous
and cancerous conditions of the lung, is an evolving science, addi-
tional feature possibilities are sure to develop in the future. For the
purposes of this comparative study, however, we restricted our 3D
feature set so that each feature in the 2D set has a comparable def-
inition in the 3D set. Also, there is additional complexity regarding
the computation of features in 2D relative to 3D. The 2D features
are based on the portion of the object in the image plane. In some
cases, features in 3D, such as in the histogram features in Table 1,
are based on the whole 3D object. For ease of computation, shape
features in 3D were computed as the summation of values for all the
slices that comprise the 3D object. For example, the surface area was
computed, using erosions and subtractions, by finding the perime-
ter for the object in each slice and summing over all slices in the
3D volume. This technique can result in noise at the poles of the 3D
object. It remains to be seen if 3D morphological processing would
yield improvements in feature measurements that justify the addi-
tional computational complexity.

The classifier development followed the plan outlined below:

1. Image input—digital 2D images and 3D tomographic reconstruc-
tions of the cell nuclei to be classified were produced from the
same cell.

2. Segmentation—the object of interest is extracted from the back-
ground.

3. Feature extraction—measurement of features of the object as de-
fined by the segmentation mask. K features are defined to be a
best guess to discriminate the classes.

4, Database—populate a database containing N normal and M ab-
normal objects. K features are computed for each object.

5. Feature selection—identify those J (J<K) features that best dis-
criminate between normal and abnormal classes.

6. Classifier—combine J features into a single numeric risk score that
expresses the likelihood that the object is abnormal.

Accurate segmentation is important since features are based on the
pixels in the 2D image or 3D volume that correspond to the seg-
mentation mask. Since hematoxyln stain is taken up by the nuclear
envelope, typically there is a sharp gradient that separates the back-
ground grey level from that of the rim of the nucleus. Also, cells
are presented one at a time; so therefore, it is not necessary to

disentangle adjacent cells. Consequently, segmentation was a sim-
ple procedure, accomplished by threshold. This threshold was estab-
lished by examining the histogram for the 2D image or 3D volume
in question. Most of the pixels in the image or volume are associated
with the background, and so this grey level may be discovered easily
by finding the primary mode, or peak, of the grey scale histogram for
the 2D or 3D image. Trial and error then yielded a small offset so that
the final threshold value was 105% of the primary mode grey scale
value. Segmentation was further refined by performing a connected
components [7] algorithm on the resulting mask to remove spurious
debris that might remain above the threshold for the primary object.

We selected the classification technique [8] to reduce over-
specialization to training data. Over-specialization occurs when
the classifier fits around sampled feature values in ways that do
not reflect the true characteristics of the feature distributions. Our
training results were checked for over-specialization using the
leave-out-one method of cross-validation [9]. From the available
features, non-parametric feature selection was performed to choose
the features to be used in the classifier. Non-parametric feature se-
lection [10] assures that no prior assumptions were made regarding
the statistical distribution that characterized the features. Feature
selection was done in an independent way for classifiers using
one, two and three features and in a stepwise fashion [11] there-
after. Confidence intervals for sensitivity were established using the
bootstrap method [12].

3. Experimental design

We tested the hypothetical advantage of 3D over 2D features by
independently developing classifiers based on 3D tomographic re-
constructions and fixed focal plane 2D images. The study was de-
signed to eliminate cell population and preparation bias that could
be introduced by performing the study on two different groups of
cells. Therefore, a common group of cells was used for the collection
of both a 2D image focused in the center of the nucleus and a set of
pseudo-projection images to compute a 3D tomographic reconstruc-
tion. Moreover, a single set of features was defined in both 2D and
3D and a single method for the development of the classifier was
used for both sets of data. Defining the study in this way allowed for
isolation of performance differences to a single causal factor: the rel-
ative merits of 2D and 3D features. The study comprised 178 nuclei
from adenocarcinoma cells and 148 nuclei from normal cells.

Tomographic reconstructions were further processed to render
their features more apparent for visual inspection. Applying a thresh-
old for opacity to render a noise free background produced the object
surface. Opacity for the object interior was graded based on the grey
scale histogram. Chromatic contrast was applied to further enhance
appreciation of sub-nuclear features, such as a nucleolus. Yellow,
orange and red represents relatively high stain-absorbing structures
such as nucleoli, green characterizes the nucleoplasm and grey de-
fines the nuclear wall. Finally, the 3D reconstruction may be cropped
to further examine internal structures that may be of interest.
Fig. 2 illustrates tomographic reconstruction for an adenocarcinoma
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Fig. 2. Surface and cropped tomographic reconstructions for adenocarcinoma and normal epithelial cell nuclei. (a) Surface of an adenocarcinoma nucleus. (b) Surface of a
normal epithelial nucleus. (c) Cropped translucent rendering of the adenocarcinoma nucleus of panel (a). (d) Cropped translucent rendering of the normal epithelial nucleus
of panel (b). In panels (c) and (d), gray to green to orange to red represents increasing optical absorption.

cell nucleus and a normal cell nucleus. The reconstructions may
also be examined through 360° of rotation in movies, Mov1, Mov2,
Mov3 and Mov4 (see Appendix A).

4. Results

Results for the study are summarized in Figs. 3 and 4. Classifier
sensitivity for 2D and 3D data sets were optimized for specificities of
90%, 93% and 96%. Cross-validated sensitivity was examined across
all conditions to verify that the classifiers were not over-trained.
Observations were made of the differences between the sensitiv-
ity using the whole training set and the sensitivity based on cross-
validation results versus the number of features used in the classi-
fier. Over-training is indicated when this difference systematically
increases with a larger number of features. No systematic increase
was noted for 2D or 3D classifiers. We therefore conclude that clas-
sifiers were not over-trained.

The bootstrap technique was used to estimate the average sen-
sitivities for the 2D and 3D classifiers using between one and seven
features. Bootstrapping was applied by sampling our data with re-
placement while maintaining the sample size for normal and ade-
nocarcinoma at 148 and 178, respectively. A total of 1200 data sets
were initially created. Thresholds for a desired specificity were com-
puted for each data set. We desire the confidence interval for sensi-
tivity given a constant specificity. Therefore, only those data sets of a
consistent specificity near our target were accepted. The remaining
data were down-sampled to ensure that 1000 data sets remained for
all conditions studied.

Fig. 3 shows average sensitivity versus number of features for 96%
specificity for 2D (red) and 3D (blue) classifiers. The figure shows
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Fig. 3. Sensitivity versus number of features: 96% specificity. Shown are average
sensitivities for 3D (blue) and 2D (red).

that sensitivity for 3D exceeds 2D for all feature levels. Wide dif-
ferentials in sensitivity exist between 3D and 2D classifiers for one
feature (the strongest feature) alone. The trend of Fig. 3 shows that
asymptotic sensitivity was achieved for 2D and 3D classifiers using
six features (of the 65 that were tested). More features are required
to reach asymptotic sensitivity for 2D than for 3D, so that two-feature
sensitivity for 3D exceeds six-feature sensitivity for 2D.
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Sensitivity vs. Specificity for Bootstrap Analysis: 6 Features
Blue - 3D, Red - 2D
Solid - Average Sensitivity, Dashed - Lower(3D)
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Fig. 4. Sensitivity versus specificity for bootstrap analysis: six features. Shown are
3D (blue)—average and lower 90th percentile sensitivity; 2D (red)—average and
upper 90th percentile sensitivity.

Table 2
Most important features for 2D and 3D classifiers

2D features 3D features

Nuclear surface area
Large-sized texture for edge enhanced
volumes

Nuclear perimeter

Small-sized texture for edge
enhanced areas

Medium-sized texture for
edge enhanced areas

The bootstrap technique was further used to estimate the follow-
ing data points at 90%, 93% and 96% specificity. For the 2D classifier,
the upper 90th percentile for sensitivity was determined. The upper
and lower 90th percentiles defined the range that included 90% of all
performance estimates. Thus 5% of the performance estimates were
above the upper 90th percentile and 5% were below the lower 90th
percentile. Therefore, there was only a 5% chance that the perfor-
mance was above the upper 90th percentile. For the 3D classifier, the
lower 90th percentile for sensitivity was determined. Consequently,
there was only a 5% chance that the performance was lower than
the 90th percentile.

These data are plotted in Fig. 4. The 3D and 2D classifiers are again
represented in blue and red, respectively. Solid lines represent the
average sensitivity, and dashed lines represent the 90th percentile
limits for sensitivity.

Fig. 4 shows a substantial differential in average sensitivity be-
tween the 2D and 3D classifiers that increases with specificity. More-
over, the figure shows no overlap between the lower 90th percentile
for 3D and the upper 90th percentile for 2D. Therefore, performance
of cell classification for 3D is improved over 2D with statistical signif-
icance. Average sensitivities at 96% specificity for 3D and 2D are 97.3%
and 91.9%, respectively. Looking instead at the residual false nega-
tives, the 3D performance improvement corresponds to 8.1/2.7 =3,
or conversely, 2D produces a threefold increase in false negatives.
Moreover, in an automated, rare-event cancer-detection paradigm,
where high specificity is essential, the critical improvement in sen-
sitivity achieved with 3D analysis may be acceptable, whereas 2D is
not.

Table 2 shows a comparison of the first three features used for
the classifier for 2D and the first two features for the classifier for
3D, both at 96% specificity, and demonstrates consistency in feature
selection between the classifiers for 2D images and 3D tomographic
reconstructions.

5. Summary

This study provides a validation for an automated lung cancer
screening concept involving analysis of 3D tomographic reconstruc-
tions of cells. The study has demonstrated the superior merit of
automated classification using 3D nuclear features relative to their
2D counterparts. However, this study is of limited scope, and is
not necessarily representative of all the factors that would shape
performance in a commercial screening instrument. Looking for-
ward, we identify various factors that will receive further study and
optimization.

o The study was performed using nuclei from lung adenocarcinoma
and normal lung epithelial cell lines. While these cell lines derive
from single human donors, this should not be seen as a limitation
to the generalization of the results since normal and cancer cell
morphology is independent of the host [13,14]. The next, clinical
phase of research will determine how 3D classification performs
on whole cells from sputum samples that have been collected
from a broad patient population that encompasses the spectrum
of lung normal, dysplastic and cancerous conditions.

Cell preparation may not have been optimal for this study; how-
ever, it was consistent for all cells studied.

Various parameters associated with the Cell-CT, such as condenser
and objective NA, camera dynamic range, etc., may still require
optimization.

Features used in the 2D classifier respond to finer texture than
their 3D counterparts. The 3D resolution for the Cell-CT system
has been established at 0.9 um and, given the system objective
and condenser NA values, it is likely that 2D resolution is some-
what better than that. Therefore, it is likely that nuclei are ren-
dered with higher resolution in 2D than in 3D. Consequently, Figs.
3 and 4 suggest that the more comprehensive morphological rep-
resentation of nuclei in 3D trumps resolution as a determining
factor for classification performance and that performance in 3D
may be further enhanced by improving system resolution.

By representing nuclei in 3D we eliminate classification errors
arising from the perspective and focal plane position issues in-
herent in 2D imaging under a microscope. One may think, for ex-
ample, of the characterization of nucleoli. Nucleoli may overlap
in 2D, making an accurate count of these structures problematic.
Preliminary studies, still in progress, demonstrate this effect and
show greater likelihood for errors in 2D classification for struc-
tures that are complex. Therefore, errors in 2D-based classification
are more likely to be made, for example, for an adenocarcinoma
nucleus than for its relatively featureless normal counterpart.
This study has largely explored features that have known signifi-
cance from 2D cytology. The 3D imaging opens a larger, more com-
prehensive multidimensional feature domain for development. In
fact, some potentially useful features only have a 3D definition.
Returning to the consideration of nucleoli: in 2D it is not possi-
ble to determine where, relative to the nuclear wall, a nucleo-
lus is located, whereas 3D Cell-CT solves this problem and allows
distinction of a nucleolus from other condensed chromatin struc-
tures, such as a Barr body [15]. Moreover, a cell biology literature
is emerging that proposes features that may only be observable
in 3D, such as nuclear invaginations [16]. These features may be
beneficial for the cancer-detection problem.

This report provides a strong motivation to pursue classification in
3D as a technical method with broad research applications in the
biological sciences, including drug discovery and rare-event screen-
ing. Such rare-event screening may provide a key to a low cost
method for routine screening for pre-invasive disease in the lung,
the detection of which would foster early treatment with a greater
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likelihood for curative success and perhaps open the door to pre-
ventive therapies.
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